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Small-scale chaos at low Reynolds numbers 
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A&tsU. A system of d$sipativ.e m&s in 1" inmmprrqsih!r Rmu & spes d_imcnsion+ 
d 2 2  is considered. The self-induced phase chaos is shown to arise in the motions of very 
small scales, which are fed by the large-scale ones through repeated nonlinear interactions. 
This property is used to derive the equations for the Fourier amplitudes. Solutions similar 
to those derived previously for turbulent fluctuations in the dissipation range are obtained. 
Roperties of the short-scale intermittency are analysed. We show that no coherence and 
intermittency can be built up at asymptotically high wavenumbers. 

1. Introduction 

The energy of the fully developed turbulence is excited at some scale L, and is 
transferred through the inertial range to vortices of the Kolmogorov scale q. where it 
is finally dissipated. Some portion of the turbulent energy penetrates into the dissipation 
range I .  x 7-l znd pmducez 2 ripid!y decrezsing tei! to the :crbu!ence spectrum. !n 
the dissipation range, the actual form of the turbulence spectrum is determined by 
vortices at low Reynolds number. Nevertheless, the pertinent nonlinearity of the 
small-scale motions cannot be discarded. 

The linear stability analysis gives the following asymptnte of !he spectrum in the 
dissipation range (Townsend 1951, Novikov 1962): 

F ( k )  oc exp[-(qk)'j. (1.1) 

In statistical theory it has been shown (Kraichnan 1959, Kuz'min 1971, Kuz'min and 
Patashinskii 1979, Dubovikov and Tatarskii 1986), that the energy transfer via a 
nonlinear cascade gives the more slowly decaying spectrum 

F(k)ccexp(-qk). (1.2) 
An attempt to solve the problem leads to difficulties that are well known in theories 
with strong interactions. The main one is the failure of perturbation theory. On the 
other hand, most of the additional difficulties, which are known to be peculiar to 
inertial range turbulence theories, are absent at Ilk + 00. For example, infrared divergen- 
ces did not appear, and time proved to be an irrelevant variable in the dissipation 
range. Therefore, dissipation range turbulence is not as great an obstacle for strong 
coupling techniques as turbulence in the inertial range, and the renormalized perturba- 
tion expansions as well as the renormalization group technique should be tested 
primarily in this area. 

A number of effects in the system of dissipative modes have their own interest. In 
particular, in section 2, the self-induced phase chaos of dissipative harmonics in flows 
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of space dimensions d 2 is considered. This chaos will be shown to occur; it prevents 
marked intermittency being produced in the dissipation range. Thus, intermittency 
effects, which break the scaling in the inertial range, are of increasingly lesser importance 
as nk+m.  In this respect a considerable difference in fluid turbulence from one- 
dimensional systems should be noticed. For the latter case Frisch and Morf (1981) 
revealed an enhanced influence of intermittency at Ilk + 00. One may expect the scaling 
properties to appear in the most pure fashion in fluid turbulence at vk -f m. 

In section 3 a non-isotropic energy cascade to wavenumbers q k  >> 1 is investigated, 
and a solution for the spectral tensor is obtained. In section 4 the expansion parameter 
of the renormaliqed diagram series is revealed. This parameter proved to be the energy 
conversion parameter, which is the nonlinear energy supply divided by the energy 
dissipation. In the inertial range the equivalent parameter is the square of the Reynolds 
number determined from the effective viscosity (see Kuz’min and Patashinskii 1972). 
in the dissipation range, the Reynoids number is smaii, but the energy conversion 
parameter appears to be of the order of unity, because the nonlinear inflow of energy 
is equal approximately to the dissipation at a given scale. Thus the dissipation range 
turbulence is a typical example of a system with strong interaction. A reasonable theory 
can be obtained by taking into account only the first few diagrams. We believe that 
other diagrams are of less importance in the renormalized series. 

G A Kuz’min and A Z Palashinski; 

2. Phase chaos at short scales 

Let us consider the spatially periodic flow of incompressible fluid at small Reynolds 
number. The velocity field is represented as the Fourier series 

u(x, I) = E  u(k, 1 )  exp(ikx) 
k 

where Lis  the spatial period, which is assumed to be very large, and d is the dimension 
of space. From the Navier-Stokes equations, one obtains the equations for the complex 
amplitudes u(k, I): 

(J/JI+ vk2)u,(k, f ) = ( - i P ) P d k ) I  U,(% 0ul(k-q,  t )  (2.1) 
x 

where 

PE,i(k)= k,A,i(k)+ k,A,(k) A,(k) = 6, -k,k,lk2 k.u(k, I ) = O .  (2.2) 

We assume that the initial Fourier amplitudes u(k) = u(k, lo) differ from zero only 
when k < k,= I - ’ ,  where l e  L is the main scale of the flow. Because the Reynolds 
number R is small, the subsequent evolution of the Fourier components at k 6 ko is 
correctly determined by (2.1), omitting the right-hand side. The solution of the 
equation is 

uu(k, I) =exp[-uk2(t- fo)lu(k). (2.3) 

At wavenumbers k >  k,, the right-hand side of (2.1) cannot be discarded, because 
the nonlinear interactions serve as an energy source. In order to find nonlinear 
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ui(k, t )=up(k ,  f ) +  df'exp[-uk2(f-r')](i /2)P~,(k)~ uj(q, f ' ) u , ( k - q ,  f'). (2.4) 

This equation can be simplified. The nonlinear interactions lead to cascade increasing 
of wavenumbers k = n b ,  and of characteristic frequencies w = nw,, wo = vkt being 
the characteristic frequency of U'. At k >> b, the time dependence of the velocities 
uj(q, t'), u,(k-q, f )  on the right-hand side of (2.4) is slow when compared to 
exp[-uk2(f - f')]. Therefore, one can integrate over 1' in (2.4), treating the velocities 
as time-independent. This conjecture is supported by the detailed calculations per- 
formed by Kuz'min and Patashinskii (1979). The simplified static equation for u ( k )  
is then . . 

J 'I 

We use a graphic notation similar to that used by Wyld (1961) and Kuz'min and 
Patashinskii (1979). The function (uk')-' is represented by an arrow +. The vertex 
operator (-i/2)Eyl(k) Z, is represented by a point ., and the large-scale velocity U is 
represented by a line ...... Thus, (2.5) can he written symbolically as 

Iterating (2.5) and (2.61, one obtains the velocity u ( k )  as a series in its large-scale 
component u(k). The effective small parameter of the expansion is the Reynolds 
number R. The graphical form of the series is given by a sum of tree diagrams: 

At each vertex the wavevector is conserved. The sum of the wavevectors of entering 
lines is equal to the wavevector of the exiting arrow, so the wavevector flows without 
any loss from the branches ..... = U to the trunk of a tree. 

The wavevector of a diagram of nth order is equal to the sum of the wavevectors 
of all factors u(k,), where k , = b :  

The analytic expression for the nth-order diagram is of the form 

I , =  E M ( k 1 ,  k,, . .. , k.1 Il (ki, k i , .  . . , k.1 (2.9) 

where n=n:=, u(kj) and M is a vertex function of nth order, which is composed of 
the functions ( u k 2 ) - ' ,  and of the vertex functions P(k).  Indices are not shown for 
simplicity. 

Let us treat each kj in (2.8) as a step, and the sum (2.8) as a result of a walk in 
Fourier space. The sum (2.9) over all hi is thus a sum of contributions to u(k) from 
different paths ( k i } .  For k >> ku, the first n < k / k o  terms in the expansion (2.7) give no 
contribution to u(k), because the condition (2.8) can be fulfilled only if n > k/k,. 

*, i-...+*"=k 
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The contribution of terms, the order n of which exceeds k/ko only slightly, is still 
small because the available volume, which is restricted by (2.8), is small. On the other 
hand, the contributions of terms of orders n >>k/k,  is small in the parameter R<< 1. 
So there exists an optimal order n n >  k / h  giving the maximal contribution to "(k). 
The optimal order no is produced by competition among the available volume and the 
power of the effective expansion parameter. 

It may be concluded that the optimal no corresponds to such paths that almost 
every step leads in the k-direction, so that the loneitudinal projections of ke are posi!ive, 
and are of the order of ko. The transverse components of ki are of the same order but 
have no preferred direction. 

When estimating (2.9), the phases of the complex amplitudes have to be taken into 
account. Denoting u,(k) = Iu,,,(k)l exp(i+,(k)), one has n =  In( exp(i@), where II = 
exp(XY=, loglu(k,)l), @ = XL, +(k;). Let us suppose that u(k) is an analytic function 
of k. For a small variation of a path {k;+SkJ, the phase @ changes additively: 

(2.10) S@= 1 S+(kj) W(kJ=-$ M k )  Ski. 
, = I  k = X ,  

Thus, at large n a small variation of a path may lead to a great variation of the total 
phase a@> T. Such a behaviour of @ implies a strong interference of contributions 

destroying the phase rD.  
Let us estimate the effective number of tubes with different phases. The total shift 

of the phase (2.10) is composed of a large number of small shifts S+(kj)aSk,/kn with 
arbitrary signs, so 8rD is estimated as in the theory of Brownian motion as 6@ot 
(SkJkJf i .  This value is less than n if Ski < k o / f i .  Thus, in (2.9) one may replace 
the .sum over ki, i = l , 2 ,  ... by a sum over elementary cubes of volume ( 6 k i ) d a  
( k o / f i ) d o t ( k i / k ) d f 2  (note that n a k l h ) .  The volume in which the factors u(k) do  
not vanish is of the order of k,d, so the number of such cubes is equal to kt / (ki /k)d/ 'a  
( k / h ) d f 2 .  

Any two paths are considered as different only if they pass through different sets 
of cubes in any sequence, so any path occurs in (2.9) n ! a 2 ~ n " + " ~ / e x p ( n )  times. 
I", the x-E-be: nf &!?erect paths N(1) is of the order of 

fro- digerect pat$s, ;,aria~ofis. lxs& a thin pLbe in C;space are a!!o*,ab!e -ithvL! 

N (  k) a [( k/ k,Jdf2]"/ n ! a (k/ ko)"'d-2)f2 exp(n). (2.11) 

At d 3 2, not k/ ko )> 1 this number is very large. 
The expression (2.9) can be written as a sum of contributions from the tubes {k;}: 

In{k)= 1 M{kiln{kil. (2.12) 
{XI 

The phase of the contributions has been shown to be a sharp and complicated function 
of the path (ki}. Very often such a complicated function with sharp and unpredictable 
behaviour is identified to a random function (e.g. see Lichtenberg and Lieberman 
1983). Summing up (2.12) of such random contributions may be treated as a random 
walk in a complex plane. Both the amplitude and phase of I., which are results of the 
random walk, are random. 

From the above considerations, we suppose that only the statistical properties of 
the complex Fourier amplitudes u(k) matter at large wavenumbers. The memory of 
the phases of u(k) is lost when the energy transfers to wavenumbers k >> I - ' .  The same 
supposition seems reasonable for most of the characteristics of the amplitudes of 4 k ) .  
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However, some information about the orientation of the initial vortex is conserved 
because the random walk in k-space has the preferred direction k. 

If most of the information about the large-scale field U is lost, we may replace it 
by a random field with suitable statistical characteristics. For turbulent fluctuations in 
the dissipation range, such a theory was studied previously by Kraichnan (1959), 
Kuz'min (1971), Kuz'min and Patashinskii (1979) and Dubovikov and Tatarskii (1986) 
with the result (1.2). We develop a similar universal theory for small-scale motions in 
vortices at small Reynolds number. The only complication is the loss of isotropy. 

3. The exponential solution to the equation for the spectral tensor 

In the previous section we examined a short-wave asymptote ofthe Fourier-transformed 
velocity at small Reynolds number. We argued that all details but isotropy of the 
large-scale velocity do not affect the small-scale component at d 3 2. So the initial 
dynamic problem may be replaced by a more simple statistical one. 

Let us consider (2.51, where u ( k )  is now an external random field, the source of 
the small-scale motion. It is assumed that the random field U is homogeneous, has 
normal distribution, but is not isotropic. Note that this assumption is not valid in the 
theory of developed turbulence at asymptotically high Reynolds numbers because of 
the intermittency at the Kolmogorov scale (Monin and Yaglom 1971). In particular, 
the local Kolmogorov scale 7 may fluctuate, and averaging over the fluctuations 
generally influences the spectrum (Kraichnan 1967, Keller and Yaglom 1970). On the 
other hand, our consideration is restricted by the condition R << 1.  Our choice of the 
ensemble is related to the structure of an individual vortex packet that has the same 
(lv(k)l*). 

For the Gaussian field u(k) any mean value of the type 

(Uz,(ki). . . Ucn(kn)) 

can be represented by a sum of products of all possible painvise averages (the analogue 
of the Wick theorem in quantum field theory). The average (u,(k)u,(k')) is represented 
by the Hermitian spectral tensor 

F:(k) = (L/2?r)d(~,(k)~,(-k)).  

We assume that the spectral tensor differs from zero only when k < l - ' .  
Any velocity function can be expanded in a formal functional series in u(k). An 

example of such an expansion is the diagram series (2.7). The diagram expansion for 
the spectral tensor 

E;,(k) = (L/2?r)d(u,(k)u,(-k)) 

is obtained after multiplying (2.7) by the similar expansion for U,(-k) and averaging 
over u(k). In the limit L+m any sums over wavevectors are replaced by integrals 
according to 

( 2 ? r / ~ ) d  131 ddq. 

After partial summing up of the non-renormalized diagram series, one arrives at the 
complete system of diagram equations for the spectral tensor Fu, the response tensor 
and the vertex functions (Kuz'min and Patashinskii 1979). 
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The analysis of the equations is similar to that performed by Kuz'min and Patashin- 
skii (1979) for the isotropic dissipation range. The response tensor and the vertices 
describe the external non-random perturbations which are unaffected by the weak 
small-scale component u(k), so these functions are assumed to coincide with the 
non-renormalized ones. In other words, for k >> I - '  the nonlinearity should be taken 
into account only so far as it is the only energy source. Therefore, it remains to solve 
the equation for the spectral tensor Fo. This equation assumes the form (see equation 
(8) of Kuz'min and Patashinskii (1979)) 

where the spectral tensor is represented by a wavy line 
solution to (3.1) in the form 

. We shall seek the 

Fo(k)  =*y(k) exp[-(?(e)k)'l. (3.2) 

Here e = k / k  is the unit vector in the direction of k. The function v (e )  is assumed to 
be determined by the condition F,aF; at k a l - ' .  We assume that q ( e ) = v ( - e ) ,  
y > l +  q G  is a Hermitian tensor that varies, when k>>!- '>  !ess rapid!y !han a power 
function. 

Let us compute approximately the tensor F, with the aid of (3,1), on the right-hand 
side of which we retain only the first diagram. The equation to be solved is 

E,(")= v - ' K 4  dd4(kiF,,(q)k,A,,(k)F,"(k-q)An,(k) J 
+ kiFl,(q)A,(k)A,,(k)F,.(k -q )kn)  

Substituting (3 .2)  into this equation, we have 

* , ( k )  = v - ' K 4  1 d d 9 ( k i Y ~ , ( q ) k , A , , ( k ) q ~ " ( k - q ) A , ( k )  

+ klq, , (q)A, , (k)A,~(k)q~"(k-q)k")  exp(K) (3.3) 

where K = ( k q ( k ) ) ' - ( q v ( q ) ) Y - ( ( k - q l q ( k  -4))' .  At qk>> 1, the dominant contribu- 
tion to the integral is made by the region where the index of the exponential function 
has its maximum value. For -y> 1, v ( e )  = 1) = cons;, the maximum lies in the region 
where q = k - q = k/2. It is clear that this maximum remains if non-isotropy is not too 
large. To define this condition more precisely, let us expand the index of the exponential 
function in the components of the wavevectors, which are transverse to k. If we denote 
the non-dimensional longitudinal and transverse components of q as s = e ( e . q / k )  and 
w,=A,, (e)q, /k ,  then 

Jn'w. .  1 J2n' w,?wI 
Je, s 2de,Je, s 2  

v ~ ( q / 9 ) % q ~ ( e ) + - L - - + - - -  

a q y  W, I J'V' W,W, 
q ' [ ( k - q ) / l k - q l ] -  ? ' ( e ) - -  -+- -- 

Je, 1-s  2 J e W J e , ( 1 - s ) *  
(3.4) 

9 ' ~  s7k'[l + y w 2 / ( 2 s 2 ) ]  I k - q l ' = ( l - s ) ' k ' { l + y ~ ~ / [ 2 ( 1  -s)']} 
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and 

It is convenient to choose the special coordinate system in which the last axis is directed 
along k and the other axes are directed along the eigenvectors of the matrix 

1 a v y  
v y  ae, ae. 

A,, = yS,, + - -. 

In this coordinate system the matrix A is as follows: 

/A, 0 0 ... o \  

(3.6) 

0 _ _ _  0 A 
0 ... 0 0 y /  

, .  . .  ~-~.-.... \ wnere A , ,  A ~ ,  . . . , A d - ,  , y are the eigenvaiues of ih2 matrix. 
One sees that if the eigenvalues A, ,  . . . , A d - ,  have different signs, then the function 

K has a saddlepoint at w = 0, s = i. If all Am are positive, the function K has a maximum 
at this point. If any A, = 0, terms of higher order in  expansions (3.4) should be taken 
into account. 

From (3.16) it follows that an eigenvalue A, may be  negative if the second derivative 
of 7' in the associated direction is negative and is sufficiently large in its absolute 
value, that is, 

In these cases the dominant contribution to the integral (3.3) arises from Fourier 
harmonics with strongly non-collinear wavevectors. Therefore, strong interactions 
among the Fourier modes with different directions of their wavevectors occur. These 
interactions tend to diminish the strong initial non-isotropy while the energy is trans- 
ferred to the high wavenumber region. One may suppose that strong non-isotropy with 
negative eigenvalues does not occur at vk  ̂ f m, though it might take place at a moderate 
qk. However, arbitrary non-isotropy with positive eigenvalues is possible at any q k  >> 1. 
We shall not consider these cases in more detail. 

For a moderate degree of non-isotropy, the eigenvalues are positive and the 
dominant contribution to the integral (3.3) comes from the region where q = k / 2 .  Thus, 
the right-hand side of (3.3) is of the order of exp[(qk)'(1-2'-')], and is exponentially 
large compared to the left-hand side. So, for y >  1, (3.3) cannot be satisfied. For 
O < y < l ,  the index of the exponential function has a maximum, when q<<k  or 
Ik-ql<< k This corresponds to a case in which the dominant role is played by 
interactions of short-wave pulsations directly with pulsations of the principal scale. 
However, it has been shown (Townsend 1951, Novikov 1962) that such interactions 
lead to a solution with y = 2, and not with y < 1. Therefore, the only y-value that is 
not,at variance with the equation is y = 1. 
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For y = 1, (3.5) and (3.6) become 

1 J2q 
A,. = S,, +- -. 

7 Je, Je. 

The pre-exponential factor 'P is obtained with the aid of the Laplace method (Erdelyi 
1961). The exponent K contains the large factor qk x 1, and the dominant contribution 
to the integral on the right-hand side of (3.3) is made by the region where q and k are 
almost collinear. So one may expand 'P I , (q) ,  ' P 3 " ( k - q )  in (3.3) in powers of w :  

where . 
q = k(se+ w )  p = k[(l - s ) e -  w ]  e = k / k .  (3.10) 

The solenoidality condition (2.2) implies that 

'PY,(q)q,='Pq(P)P, =o. (3.11) 

Substituting (3.9) and (3.10) into (3.11) and equating the terms with equal powers of 
w, one finds that 

1 
V,,[(1 -s )k Iw , .  w =-- I w = o  1 - s  

k, 

By inserting (3.7)-(3.12) into (3.3), one obtains 

(3.12) 

(3.13) 

The integration over w gives 

By virtue of (3.14), (3.13) assumes the form 



Small-scale chaos ai low Reynolds numbers 5771 

This equation has the power solution 

30v2( ~ k ) ' ~ + ' ) / ~ a x .  
V , (k )  = 

zIIcIGLv,c, in aaj; iooi:ifieie jjisiem the spedrai ieiisui (3.2) cm be wriiien as 

(3.15) 

where the matrix A,. =A,.(k/k) is defined by (3 .8) .  If v ( k / k )  does not depend on 
the direction of k, then A,. = a,,, and (3 .15)  reduces to the solution obtained by 
Kuz'min and Patashinskii (1979)  and Kuz'min (1979)  for the same approximation. 

4. Expansion parameter and intermittency factor in the dissipation range 

Let us consider diagrams of higher order. A diagram F,, containing n integrations 
over ddk, has n-t  1 wavy lines, 2n vertices and 2n  functions (vk2)- ' :  

F,, x ( P /  ~ k ' ) ~ " F " + ' [ k / ( n  + l ) ] ( k f f ' k ) "  

where k, is the size of the integration domain in the transverse plane, P Z  k,. The 
exponential factor restricts this size and k ,  can be estimated as 

k, a ..&. 
One sees that the effective parameter of expansion (3.1) has the same order of magnitude 
as the first diagram in the right-hand side divided by the spectral function E This 
parameter can be written as 

The numerator is the nonlinear supply of energy, and the denominator is the 
viscous dissipation. In a quasi-steady case, these factors have the same value, so 

Kuz'min and Patashinskii (1972, 1978) revealed a similar parameter in the inertial 
range. The turbulent medium was regarded as being composed of wavepackets. The 
Kolmogorov scaling was treated as a situation wherein the wavepackets of all scales 
were constructed in a similar fashion and lost an equal amount of power when 
overcoming the turbulent viscosity. So in the inertial range both the numerator and 
the denominator in p are separate constants. The factor p should be naturally called 
the energy conversion parameter. The parameter p proved to be .-rf the order of the 
Reynolds number of the wavepackets, determined from the effective viscosity. The 
Kolmogorov scaling corresponds to a case wherein this Reynolds number does not 
depend on scale and is a universal constant. 

In the dissipation range the Reynolds number of the wavepackets is very small, 
but the energy conversion parameter p is not. The actual role of higher-order diagrams 
is estimated by a direct calculation, which is possible in the dissipation range theory. 
Readers are referred to our analysis of the isotropic dissipation range (Kuz'min and 

p X l .  
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Patashinskii 1979), where it was shown that the approximate solution changes little 
when the next term in the series (3.1) is taken into account. 

Similarly to  Kuz'min (1979), let us consider the small-scale intermittency in the 
framework of the diagram technique. The small-scale component of the velocity field 
in the usual space is defined as 

G A Kuz'min and A Z Patashinskii 

u(x,  I) = 1 ddku(k) exp(ikr). 
nu) 

The sum is over the region a(/) where k>l - ' .  The intermittency of the small-scale 
velocity u(k, I )  is determined by the flatness factor (Monin and Yaglom 1971) 

4 0  = ((Ui(X. o4)-3(uik  02)2)/(Ui(X, w. (4.1) 

Let us consider the Fourier expansion of the numerator a ( / )  in (4.1) 
" , I \ -  v v...,-r:,,, I,. iL,. L I . , . . ,  I , . . ,  I .  \..,..\../I \ _.,I \ \  
uI1I -i.. .i, ~ ~ ~ ' L ~ \ ~ ~ ~ ~ Z ~ ~ ~ ~ ~ ~ J * J \ \ ~ ~ \ ~ ~ J ~ ~ \ ~ ~ J ~ ~ ~ ~ ~ J ~ ~ \ ~ ~ J /  

h 

-3(s(k,)Ui(k~))(ui(k,)ui(k.))) (4.2) 

where the summing is performed over all k, . . . k,  in C L ( / ) .  After substituting of (2.7) 
into (4.2), one obtains a ( / )  as a series of all possible diagrams with four exiting lines. 
One o f  the lowest-order diagrams is -- 

-L"% 
The spectral tensor decreases rapidly as its wavenumber increases. Therefore, the 

dominant contribution to the sum (4.2) comes from the region where the wavenumber 

b ( l )  in p 

nr+ha :ntntnn l  ..IO.,.l I:nr i o  ,.f rh- ,.-A-- nf --' UIRa-. an...--- -2 f- r L -  A----:--&-- ". L 1 . l  I I . L . . I L I V I  "'L,, .Ill.. 10 "L L L L Z  " L U C I  ", ', . IIl lr l l  L"'LLp'lLGu L U  1115 "rllu ,,,,,, a,", 

a ( / )  contains an additional wavy line, two bare Green functions +a ( vk2)- l ,  two vertex 
operators .CC k and one summing over the wavevectors k C  ? - I .  Therefore, the flatness 
is of the order of 

x (  I )  = a ( / ) /  b( I )  Oc (U 7)'" 1. 

A similar conclusion follows from analysis of diagrams of higher orders. Thus, the 
diagram technique reproduces the above conclusion concerning the intermittency in 
IL^ A:-.:--.:-.. ..__  ̂ --A .I_^ --a... :-.. C--.L.. :" "n,4...-..":-*m"* 
LLIC ~isbipdriuri rangc, ail" LLLC ~ U I U I I U I I  LVI ~ i i r  q x u x n r  ~ c i i i w i  13 JCII-CVLLJLILZIII.  

5. Conclusion 

In this paper we analysed the energy cascade process at asymptotically high wavenum- 
bers. We gave general arguments that the small-scale motions should have random 
phases, so no intermittency can build up in this region. Some amount of non-isotropy 
is conserved, while the energy cascades to high wavenumbers. It may be supposed that 
the motion in the dissipation range is composed of two components. The first one is 
produced by decaying coherent vortices of the Kolmogorov scale. The energy spectrum 
of this component may he similar to (l . l) ,  which may be modified by intermittency 
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effects. The second one is the universal incoherent component with the spectrum (1.2). 
Some similarities of the present picture to that proposed by Benzi et al (1986) from 
direct computer simulations of the two-dimensional flows should be noted. The uni- 
versal analytical theory for the incoherent component is proposed and the solution 
for the spectral tensor is obtained. 
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